当前位置:首页>资讯 >行业资讯>氢燃料汽车原理构造 氢能源动力汽车

氢燃料汽车原理构造 氢能源动力汽车

2023-06-09 浏览数:171

文章描述:前质子交换膜燃料电池是受众最广的技术路线,因为其在工作过程中不涉及氢氧燃烧,能量转化率高、工作过程无污染、可模块化发电,可靠性高、工作无噪音等优点。质子交换膜燃料电池的工作原理如下:点击进入看图评论电

前质子交换膜燃料电池是受众最广的技术路线,因为其在工作过程中不涉及氢氧燃烧,能量转化率高、工作过程无污染、可模块化发电,可靠性高、工作无噪音等优点。质子交换膜燃料电池的工作原理如下:点击进入看图评论电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,反应过程就能连续进行。工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正氢离子和电子。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。两电极的反应分别为:点击进入看图评论点击进入看图评论总反应为:点击进入看图评论氢能汽车,顾名思义,是以氢作为能源的汽车,将氢反应所产生的化学能转换为机械能以推动车辆。氢能汽车分为两种,一种是氢内燃机汽车(Hydrogeninternalcombustionenginevehicle,HICEV)是以内燃机燃烧氢气(通常透过分解甲烷或电解水取得)产生动力推动汽车。氢燃料电池车(Fuelcellvehicle-FCEV)是使氢或含氢物质与空气中的氧在燃料电池中反应产生电力推动电动机,由电动机推动车辆。广泛使用氢燃料作为交通能源是氢经济的一个关键因素。使用氢为能源的最大好处是它跟空气中的氧反应,仅产生水蒸气排出,有效减少了传统汽油车造成的空气污染问题。HICEV一般以内燃机为基础改良而成,要实现并不困难,困难之处在于如何降低成本及达至安全,以及安全地解决氢气供应、储存的问题后才可以推出市场。高速车辆、巴士、潜水艇和火箭已经在不同形式使用氢。氢燃料电池1.熔融碳酸盐燃料电池(MCFC)1980年研制成功,在650℃下工作,把熔融碳酸盐作为电解质,把送到正极的二氧化碳作为离子载体。不需要催化剂,而且可以使用天然气等其他气体燃料。但是启动时间较长。2.固体氧化物燃料电池(SOFC)1980年研制成功,电解质为含有氧化锆等成分的固体陶瓷材料。工作在800~1000℃的高温,离子可以通过陶瓷材料。不需要铂等催化剂。也可以使用其他气体燃料,启动时间也较长。3.固体高分子燃料电池(PEFC)目前投入研究力量最大的电池,电解质为高分子树脂薄膜,可以实现小型化。工作温度在100℃以下,但是需要催化剂。也可以使用甲醇。启动时间也最短。4.磷酸燃料电池(PAFC)1967年研制成功,工作温度接近200℃,需要催化剂,电解质为磷酸水溶液,在饭店和医院使用较多。氢能汽车氢内燃机动力氢内燃车和氢燃料电池车不同。氢内燃车是传统汽油内燃机车的带小量改动的版本。氢内燃直接燃烧氢,不使用其他燃料或产生水蒸气排出。这些车的问题是氢燃料很快耗尽。载满氢气的油缸只能行驶数英里,很快便没能量。另一方面,各色各样的方法正在研究以减少耗用的空间,例如用液态氢或氢化物。1807年IsaacdeRiv制造了首辆氢内燃车。可惜该设计甚不成功。宝马的氢内燃车有更多的力量,比氢燃料电池车更快。宝马的氢汽车以三百公里每小时创下了氢汽车的最高速记录。马自达已在开发烧氢的转子引擎。该转子引擎反复转动,故氢从开口在引擎内的不同部分燃烧,减少突然爆炸这个氢燃料活塞引擎的问题。其他重要汽车生产商如通用汽车和DaimlerChrysler公司,投资在较慢较弱但较有效的氢燃料电池。产业发展多间公司都有研发氢气车,资金有来自私人及政府,但福特汽车已经放弃,并将资源投放于纯电动车上;雷诺-日产联盟在2009年宣布停止研发氢气车;通用汽车公司在2009年10月宣布减少在氢气车的研发,原因是认为氢气车距实用化还有相当距离。2009年,日产在日本发起新FCV计划,之后在10月,日产、福特汽车、通用汽车、现代集团、丰田、戴姆勒、雷诺、起亚汽车发表联合声明,将研发燃料电池车,预计2015年完成。2011年,现代集团发表其Blue燃料电池车(FCEV)。储氢方法传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气,但钢瓶储存氢气的容积小,而且还有爆炸的危险;另一种方法是储存液态氢,但液体储存箱非常庞大,需要极好的绝热装置来隔热。一种新型简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。这些会"吸收"氢气的金属,称为储氢合金。其储氢能力很强。单位体积储氢的密度,是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气。储氢合金都是固体,需要用氢时通过加热或减压使储存于其中的氢释放出来,因此是一种极其简便易行的理想储氢方法。研究发展中的储氢合金,主要有钛系储氢合金、锆系储氢合金、铁系储氢合金及稀土系储氢合金。研究证明,在一定的温度和压力条件下,一些金属能够大量"吸收"氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。氢能与氢能汽车储氢合金还有将储氢过程中的化学能转换成机械能或热能的能量转换功能。储氢合金在吸氢时放热,在放氢时吸热,利用这种放热-吸热循环,可进行热的储存和传输,制造制冷或采暖设备。此外它还可以用于提纯和回收氢气,它可将氢气提纯到很高的纯度。例如,采用储氢合金,可以以很低的成本获得纯度高于99.9999%的超纯氢。储氢合金的飞速发展,给氢气的利用开辟了一条广阔的道路。中国已研制成功了一种氢能汽车,它使用储氢材料90千克,可行驶40千米,时速超过50千米。今后,不但汽车会采用燃料电池,飞机、舰艇、宇宙飞船等运载工具也将使用燃料电池,作为其主要或辅助能源。另外由于大量使用的镍镉电池(Ni-Cd)中的镉有毒,使废电池处理复杂,环境受到污染。镍氢电池与镍镉电池相比,具有容量大、安全无毒和使用寿命长等优点。发展用储氢合金制造的镍氢电池(Ni-MH),也是未来储氢材料应用的另一个重要领域。动力来源燃料电池的优势,科技手段中,尚没有一项能源生成技术能如燃料电池一样将诸多优点集合于一身。能源安全性。自1970年代的石油危机后,各大工业国对石油的依赖仍有增无减,而且主要靠石油输出国的供应。美国载客车辆每日可消耗约600万桶油,占油料进口量之85%。若有20%的车辆采用燃料电池来驱动,每日便可省下120万桶油。国防安全性。燃料电池发电设备具有散布性的特质,它可让地区摆脱中央发电站式的电力输配架构。长距离、高电压的输电网络易成为军事行动的攻击目标。燃料电池设备可采集中也可采分散性配置,进而降低了敌人欲瘫痪国家供电系统的风险。高可靠度供电。燃料电池可架构于输配电网络之上作为备援电力,也可独立于电力网之外。在特殊的场合下,模块化的设置(串联安装几个完全相同的电池组系统以达到所需的电力)可提供极高的稳定性。燃料多样性。现代种类繁多的电池中,虽然仍以氢气为主要燃料,但配备「燃料转化器(或译重组器,fuelreformer)」的电池系统可以从碳氢化合物或醇类燃料中萃取出氢元素来利用。此外如垃圾掩埋场、废水处理场中厌氧微生物分解产生的沼气也是燃料的一大来源。利用自然界的太阳能及风力等可再生能源提供的电力,可用来将水电解产生氢气,再供给至燃料电池,如此亦可将「水」看成是未经转化的燃料,实现完全零排放的能源系统。只要不停地供给燃料给电池,它就可不断地产生电力。高效能。由于燃料电池的原理系经由化学能直接转换为电能,而非产生大量废气与废热的燃烧作用,现今利用碳氢燃料的发电系统电能的转换效率可达40~50%;直接使用氢气的系统效率更可超过50%;发电设施若与燃气涡轮机并用,则整体效率可超过60%;若再将电池排放的废热加以回收利用,则燃料能量的利用率可超过85%。用于车辆的燃料电池其能量转换率约为传统内燃机的3倍以上,内燃引擎的热效率约在10~20%之间。环境亲和性。科学家们已认定空气污染是造成心血管疾病、气喘及癌症的元凶之一。最近的健康研究显示,市区污染性的空气对健康的威胁如同吸入二手烟。燃料电池运用能源的方式大幅优于燃油动力机排放大量危害性废气的方案,其排放物大部份是水份。某些燃料电池虽亦排放二氧化碳,但其含量远低于汽油之排放量(约其1/6)。燃料电池发电设备产生1000仟瓦-小时的电能,排放之污染性气体少于1盎斯;而传统燃油发电机则会产生25磅重的污染物。因此,燃料电池不仅可改善空气污染的情况,甚可能许给人类未来一片洁净的天空。可弹性设置/用途广。燃料电池的迷人之处在于其多样风貌。除了前述的集中分散两相宜的特点外,它还具有缩放性。利用黄光微影技术可制作微型化的燃料电池;利用模块式堆栈配置可将供电量放大至所欲的输出功率。单一发电元所产生的电压约为0.7伏特,刚好能点亮一只灯。将发电元予以串接,便构成燃料电池组,其电压则增加为0.7伏特乘以串联的发电元个数。燃料电池的劣势主要是价格和技术上存在一些瓶颈,摘列如下:燃料电池造价偏高:车用PEMFC之成本中质子交换隔膜(USD300/m2)约占成本之35%;铂触媒约占40%,二者均为贵重材料。反应/启动性能:燃料电池的启动速度尚不及内燃机引擎。反应性可藉增加电极活性、提高操作温度及反应控制参数来达到,但提高稳定性则必须避免副反应的发生。反应性与稳定性常是鱼与熊掌不可兼得。碳氢燃料无法直接利用:除甲醇外,其它的碳氢化合物燃料均需经过转化器、一氧化碳氧化器处理产生纯氢气后,方可供现今的燃料电池利用。这些设备亦增加燃料电池系统之投资额。氢气储存技术:FCV的氢燃料是以压缩氢气为主,车体的载运量因而受限,每次充填量仅约2.5~3.5公斤,尚不足以满足现今汽车单程可跑480~650公里的续航力。以-253℃保持氢的液态氢系统虽已测试成功,但却有重大的缺陷:约有1/3的电能必须用来维持槽体的低温,使氢维持于液态,且从隙缝蒸发而流失的氢气约为总存量的5%。氢燃料基础建设不足:氢气在工业界虽已使用多年且具经济规模,但全世界充氢站仅约70站,仍值示范推广阶段。此外,加气时间颇长,约需时5分钟,尚跟不上工商时代的步伐。发展现状美国早在1994年,克林顿政府实施"新一代汽车合作计划",耗资15亿美元,开发3倍于当时燃料效益的新一代先进轿车。布什政府提出"自由轿车"项目以及"自由燃料"计划(氢计划),总共耗资17亿美元,从事氢能燃料电池、氢能基础建设与尖端车辆科技的发展。美国政府在相关政策上积极鼓励新能源汽车,对购买每辆零排放汽车补贴4000美元,并要求到2006~2007年联邦机构新购车辆应有5%为氢燃料电池车,以后还将提高到20%。而以环保激进著称的加州曾一度要求到2003年全州售出新车的10%是零排放汽车;今后几年将陆续投放300辆燃料电池轿车和公共汽车试用。密执安州2002年就在底特律建立了"下一代能源"工业区,同时还颁布了"氢气高速路"计划以及一些鼓励措施,例如,购买氢动力汽车消费者可以享受减税、免费泊车和洗车价格优惠等便利。旧金山市共有90辆氢动力车在路上行驶,计划2007年在洛杉矶、旧金山推出300辆燃料电池车,同时将现有的16个加氢站,2005年底增加到27个,2010年达到50个。同时,成立"加利福尼亚燃料单元伙伴协会",与汽车制造商、环保科研机构、政府部门和民间组织联手,从资金、技术、政策、宣传、工业安全标准的设置上共同努力,推动燃料电池车的发展。[1]可见,"自由燃料"计划实际上就是放弃电动汽车的研究而转向燃料电池汽车,并要在2010年让该类汽车在市场上占到25%的份额,在2020年广泛推广实用性的氢燃料电池车。美国政府坚信,到2015~2020年,燃料电池电动汽车和氢燃料的加注基础设施,将一切准备就绪。新加坡研究人员成功研制出一种新型氢燃料电池,可用于摩托车,他们还希望这种新型燃氢电池将来能在电视、收音机甚至手机等电器上使用。冰岛人口仅28万,58%的能源和近100%的电力来自水电和地热,早在1999年就提出到2030年将率先建成氢经济,首先更换首都雷克雅未克的全部公交车,并使全部机动车和渔船使用氢燃料电池。韩国对氢燃料技术的研究比美、日等国落后4~5年,但也公布了以氢为基础的经济能源政策,希望到2020年陆续投资8.43亿美元,使交通对原油的依赖减少20%。加拿大政府投入2.15亿加元进行"氢能早期采用者计划",用于开发新观念,包括氢能高速公路的建设。"加拿大运输燃料电池联盟",政府出资2300万加元展示燃料电池车。还有,"加拿大燃料电池氢能社区伙伴"、"温哥华燃料电池专案"以及"复合燃料电池运输公共项目"等项目。同时,巴拉德公司支持加拿大政府在范库弗峰和惠斯勒之间兴建世界第一条氢能公路。通过使用建在公路上7个制氢点制取的氢气,来促进车用氢燃料电池更广泛的应用,这仅仅是加拿大氢能长期发展计划的一部分。中国2018年9月28日,武汉首批氢燃料电池动力公交车在中国光谷武汉东湖新技术开发区359路公交线路试运行,武汉首座加氢站同步启用,标志着武汉市氢燃料电池动力公交车全面进入商业化示范运行新阶段。[2]除了上述国家之外,其它各国也在努力,希望在燃料电池方面能争得一席之位。
阅读上文 >> 超车从哪边超是正确的 超车时如何使用灯光
阅读下文 >> 无证驾驶怎么处罚 无证驾驶一定要拘留吗

版权与免责声明:

本网部分文章信息来源于网络以及网友投稿,转载出于传递更多信息为目的;如转载稿涉及版权问题,或信息对您造成影响,请及时联系我们 tousuzx#qq.com(#替换为@)进行修改或删除处理!


本文地址:http://www.8-8.com.cn/news/show-1351.html

转载本站文章请注明来源:道路救援网

Copyright © 2023 8-8.con.cn All Rights Reserved 道路救援网

为道路救援行业保驾护航 救在身边 援在眼前 | ICP备案号:赣ICP备2022007050号-1